Ideal structure and pure infiniteness of inverse semigroup crossed products (2112.07420v2)
Abstract: Let $A\subseteq B$ be a $C*$-inclusion. We give efficient conditions under which $A$ separates ideals in $B$, and $B$ is purely infinite if every positive element in $A$ is properly infinite in $B$. We specialise to the case when $B$ is a crossed product for an inverse semigroup action by Hilbert bimodules or a section $C*$-algebra of a Fell bundle over an \'etale, possibly non-Hausdorff, groupoid. Then our theory works provided $B$ is the recently introduced essential crossed product and the action is essentially exact and residually aperiodic or residually topologically free. These last notions are developed in the article.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.