Papers
Topics
Authors
Recent
Search
2000 character limit reached

The multiplicity of a singularity in a vexillary Schubert variety

Published 14 Dec 2021 in math.AG and math.CO | (2112.07375v1)

Abstract: In a classical-type flag variety, we consider a Schubert variety associated to a vexillary (signed) permutation, and establish a combinatorial formula for the Hilbert-Samuel multiplicity of a point on such a Schubert variety. The formula is expressed in terms of excited Young diagrams, and extends results for Grassmannians due to Krattenthaler, Lakshmibai-Raghavan-Sankaran, and for the maximal isotropic (symplectic and orthogonal) Grassmannians to Ghorpade-Raghavan, Raghavan-Upadhyay, Kreiman, and Ikeda-Naruse. We also provide a new proof of a theorem of Li-Yong in the type A vexillary case. The main ingredient is an isomorphism between certain neighborhoods of fixed points, known as Kazhdan-Lusztig varieties, which, in turn, relies on a direct sum embedding previously used by Anderson-Fulton to relate vexillary loci to Grassmannian loci.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.