Critical configurations for two projective views, a new approach (2112.05074v4)
Abstract: The problem of structure from motion is concerned with recovering 3-dimensional structure of an object from a set of 2-dimensional images. Generally, all information can be uniquely recovered if enough images and image points are provided, but there are certain cases where unique recovery is impossible; these are called critical configurations. In this paper we use an algebraic approach to study the critical configurations for two projective cameras. We show that all critical configurations lie on quadric surfaces, and classify exactly which quadrics constitute a critical configuration. The paper also describes the relation between the different reconstructions when unique reconstruction is impossible.
- S. Maybank. Theory of Reconstruction from Image Motion. Springer Series in Information Sciences. Springer Berlin Heidelberg, 1993. ISBN 978-3-642-77559-8. doi: https://doi.org/10.1007/978-3-642-77557-4.
- Multiple View Geometry in Computer Vision. Cambridge University Press, 2 edition, 2004. doi: 10.1017/CBO9780511811685.
- Thomas Buchanan. The twisted cubic and camera calibration. Computer Vision, Graphics, and Image Processing, 42(1):130–132, 1988. ISSN 0734-189X. doi: https://doi.org/10.1016/0734-189X(88)90146-6. URL https://www.sciencedirect.com/science/article/pii/0734189X88901466.
- Richard I. Hartley. Ambiguous configurations for 3-view projective reconstruction. In Computer Vision - ECCV 2000, pages 922–935, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-45054-2.
- Critical configurations for n-view projective reconstruction. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, volume 2, pages II–II, 2001. doi: 10.1109/CVPR.2001.990945.
- Critical curves and surfaces for euclidean reconstruction. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen, editors, Computer Vision — ECCV 2002, pages 447–462, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-47967-3.
- Critical configurations for 1-view in projections from ℙk→ℙ2→superscriptℙ𝑘superscriptℙ2\mathbb{P}^{k}\to\mathbb{P}^{2}blackboard_P start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT → blackboard_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Journal of Mathematical Imaging and Vision, 27:277–287, 04 2007. doi: 10.1007/s10851-007-0649-6.
- Critical configurations for projective reconstruction from multiple views. International Journal of Computer Vision, 71(1):5 – 47, 01 2007. doi: doi:10.1007/s11263-005-4796-1. URL http://dx.doi.org/10.1007/s11263-005-4796-1.
- Critical loci in computer vision and matrices dropping rank in codimension one. Journal of Pure and Applied Algebra, 224(12):106439, 2020.
- Thomas Buchanan. Critical sets for 3d reconstruction using lines. In G. Sandini, editor, Computer Vision — ECCV’92, pages 730–738, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. ISBN 978-3-540-47069-4.
- J. Krames. Zur Ermittlung eines Objektes aus zwei Perspektiven. (Ein Beitrag zur Theorie der “gefährlichen Örter”.). Monatshefte für Mathematik und Physik, 49:327–354, 1941.
- A stability analysis of the fundamental matrix. In Jan-Olof Eklundh, editor, Computer Vision — ECCV ’94, pages 577–588, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. ISBN 978-3-540-48398-4.
- Instability of projective reconstruction of dynamic scenes near critical configurations. In 2007 IEEE 11th International Conference on Computer Vision, pages 1–7, 2007. doi: 10.1109/ICCV.2007.4409100.
- Martin Bråtelund. Critical configurations for three projective views. arXiv e-prints, art. arXiv:2112.05478, December 2021. doi: 10.48550/arXiv.2112.05478.
- Line Multiview Varieties. arXiv e-prints, art. arXiv:2203.01694, March 2022. doi: 10.48550/arXiv.2203.01694.
- Degeneracies in rolling shutter sfm. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages 36–51, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46454-1.
- Ideals of the multiview variety. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4):1279–1292, 2021. doi: 10.1109/TPAMI.2019.2950631.
- 3264 and All That: A Second Course in Algebraic Geometry. Cambridge University Press, 2016. doi: 10.1017/CBO9781139062046.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.