Papers
Topics
Authors
Recent
2000 character limit reached

Joint Global and Local Hierarchical Priors for Learned Image Compression

Published 8 Dec 2021 in eess.IV and cs.CV | (2112.04487v2)

Abstract: Recently, learned image compression methods have outperformed traditional hand-crafted ones including BPG. One of the keys to this success is learned entropy models that estimate the probability distribution of the quantized latent representation. Like other vision tasks, most recent learned entropy models are based on convolutional neural networks (CNNs). However, CNNs have a limitation in modeling long-range dependencies due to their nature of local connectivity, which can be a significant bottleneck in image compression where reducing spatial redundancy is a key point. To overcome this issue, we propose a novel entropy model called Information Transformer (Informer) that exploits both global and local information in a content-dependent manner using an attention mechanism. Our experiments show that Informer improves rate--distortion performance over the state-of-the-art methods on the Kodak and Tecnick datasets without the quadratic computational complexity problem. Our source code is available at https://github.com/naver-ai/informer.

Citations (73)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub