Papers
Topics
Authors
Recent
Search
2000 character limit reached

GreenPCO: An Unsupervised Lightweight Point Cloud Odometry Method

Published 8 Dec 2021 in cs.CV | (2112.04054v2)

Abstract: Visual odometry aims to track the incremental motion of an object using the information captured by visual sensors. In this work, we study the point cloud odometry problem, where only the point cloud scans obtained by the LiDAR (Light Detection And Ranging) are used to estimate object's motion trajectory. A lightweight point cloud odometry solution is proposed and named the green point cloud odometry (GreenPCO) method. GreenPCO is an unsupervised learning method that predicts object motion by matching features of consecutive point cloud scans. It consists of three steps. First, a geometry-aware point sampling scheme is used to select discriminant points from the large point cloud. Second, the view is partitioned into four regions surrounding the object, and the PointHop++ method is used to extract point features. Third, point correspondences are established to estimate object motion between two consecutive scans. Experiments on the KITTI dataset are conducted to demonstrate the effectiveness of the GreenPCO method. It is observed that GreenPCO outperforms benchmarking deep learning methods in accuracy while it has a significantly smaller model size and less training time.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.