Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Connectivity with Graph Convolutional Networks for Skeleton-based Action Recognition

Published 6 Dec 2021 in cs.CV | (2112.03328v1)

Abstract: Learning graph convolutional networks (GCNs) is an emerging field which aims at generalizing convolutional operations to arbitrary non-regular domains. In particular, GCNs operating on spatial domains show superior performances compared to spectral ones, however their success is highly dependent on how the topology of input graphs is defined. In this paper, we introduce a novel framework for graph convolutional networks that learns the topological properties of graphs. The design principle of our method is based on the optimization of a constrained objective function which learns not only the usual convolutional parameters in GCNs but also a transformation basis that conveys the most relevant topological relationships in these graphs. Experiments conducted on the challenging task of skeleton-based action recognition shows the superiority of the proposed method compared to handcrafted graph design as well as the related work.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.