Minimax properties of Dirichlet kernel density estimators
Abstract: This paper considers the asymptotic behavior in $\beta$-H\"older spaces, and under $Lp$ losses, of a Dirichlet kernel density estimator proposed by Aitchison and Lauder (1985) for the analysis of compositional data. In recent work, Ouimet and Tolosana-Delgado (2022) established the uniform strong consistency and asymptotic normality of this estimator. As a complement, it is shown here that the Aitchison-Lauder estimator can achieve the minimax rate asymptotically for a suitable choice of bandwidth whenever $(p,\beta) \in [1, 3) \times (0, 2]$ or $(p, \beta) \in \mathcal{A}_d$, where $\mathcal{A}_d$ is a specific subset of $[3, 4) \times (0, 2]$ that depends on the dimension $d$ of the Dirichlet kernel. It is also shown that this estimator cannot be minimax when either $p \in [4, \infty)$ or $\beta \in (2, \infty)$. These results extend to the multivariate case, and also rectify in a minor way, earlier findings of Bertin and Klutchnikoff (2011) concerning the minimax properties of Beta kernel estimators.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.