Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-shot hashtag segmentation for multilingual sentiment analysis (2112.03213v1)

Published 6 Dec 2021 in cs.CL

Abstract: Hashtag segmentation, also known as hashtag decomposition, is a common step in preprocessing pipelines for social media datasets. It usually precedes tasks such as sentiment analysis and hate speech detection. For sentiment analysis in medium to low-resourced languages, previous research has demonstrated that a multilingual approach that resorts to machine translation can be competitive or superior to previous approaches to the task. We develop a zero-shot hashtag segmentation framework and demonstrate how it can be used to improve the accuracy of multilingual sentiment analysis pipelines. Our zero-shot framework establishes a new state-of-the-art for hashtag segmentation datasets, surpassing even previous approaches that relied on feature engineering and LLMs trained on in-domain data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.