Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sharp Weak Type Estimates for a Family of Zygmund Bases (2112.02038v1)

Published 3 Dec 2021 in math.AP

Abstract: Let $\mathcal{B}$ be a collection of rectangular parallelepipeds in $\mathbb{R}3$ whose sides are parallel to the coordinate axes and such that $\mathcal{B}$ consists of parallelepipeds with side lengths of the form $s, 2j s, t $, where $s, t > 0$ and $j$ lies in a nonempty subset $S$ of the integers. In this paper, we prove the following: If $S$ is a finite set, then the associated geometric maximal operator $M_\mathcal{B}$ satisfies the weak type estimate of the form $$\left|\left{x \in \mathbb{R}3 : M_{\mathcal{B}}f(x) > \alpha\right}\right| \leq C \int_{\mathbb{R}3} \frac{|f|}{\alpha}\left(1 + \log+ \frac{|f|}{\alpha}\right)\;$$ but does not satisfy an estimate of the form $$\left|\left{x \in \mathbb{R}3 : M_{\mathcal{B}}f(x) > \alpha\right}\right| \leq C \int_{\mathbb{R}3} \phi\left(\frac{|f|}{\alpha}\right)$$ for any convex increasing function $\phi: \mathbb[0, \infty) \rightarrow [0, \infty)$ satisfying the condition $$\lim_{x \rightarrow \infty}\frac{\phi(x)}{x (\log(1 + x))} = 0\;.$$ On the other hand, if $S$ is an infinite set, then the associated geometric maximal operator $M_\mathcal{B}$ satisfies the weak type estimate $$\left|\left{x \in \mathbb{R}3 : M_{\mathcal{B}}f(x) > \alpha\right}\right| \leq C \int_{\mathbb{R}3} \frac{|f|}{\alpha} \left(1 + \log+ \frac{|f|}{\alpha}\right){2}$$ but does not satisfy an estimate of the form $$\left|\left{x \in \mathbb{R}3 : M_{\mathcal{B}}f(x) > \alpha\right}\right| \leq C \int_{\mathbb{R}3} \phi\left(\frac{|f|}{\alpha}\right)$$ for any convex increasing function $\phi: \mathbb[0, \infty) \rightarrow [0, \infty)$ satisfying the condition $$\lim_{x \rightarrow \infty}\frac{\phi(x)}{x (\log(1 + x))2} = 0\;.$$

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube