Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Zeroing-Type Neural Dynamics for Solving Quadratic Minimization and Applied to Target Tracking

Published 3 Dec 2021 in math.OC, cs.LG, cs.NA, and math.NA | (2112.01773v2)

Abstract: The time-varying quadratic miniaturization (TVQM) problem, as a hotspot currently, urgently demands a more reliable and faster--solving model. To this end, a novel adaptive coefficient constructs framework is presented and realized to improve the performance of the solution model, leading to the adaptive zeroing-type neural dynamics (AZTND) model. Then the AZTND model is applied to solve the TVQM problem. The adaptive coefficients can adjust the step size of the model online so that the solution model converges faster. At the same time, the integration term develops to enhance the robustness of the model in a perturbed environment. Experiments demonstrate that the proposed model shows faster convergence and more reliable robustness than existing approaches. Finally, the AZTND model is applied in a target tracking scheme, proving the practicality of our proposed model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.