Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Achieving a Data-driven Risk Assessment Methodology for Ethical AI (2112.01282v1)

Published 29 Nov 2021 in cs.CY

Abstract: The AI landscape demands a broad set of legal, ethical, and societal considerations to be accounted for in order to develop ethical AI (eAI) solutions which sustain human values and rights. Currently, a variety of guidelines and a handful of niche tools exist to account for and tackle individual challenges. However, it is also well established that many organizations face practical challenges in navigating these considerations from a risk management perspective. Therefore, new methodologies are needed to provide a well-vetted and real-world applicable structure and path through the checks and balances needed for ethically assessing and guiding the development of AI. In this paper we show that a multidisciplinary research approach, spanning cross-sectional viewpoints, is the foundation of a pragmatic definition of ethical and societal risks faced by organizations using AI. Equally important is the findings of cross-structural governance for implementing eAI successfully. Based on evidence acquired from our multidisciplinary research investigation, we propose a novel data-driven risk assessment methodology, entitled DRESS-eAI. In addition, through the evaluation of our methodological implementation, we demonstrate its state-of-the-art relevance as a tool for sustaining human values in the data-driven AI era.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Anna Felländer (2 papers)
  2. Jonathan Rebane (2 papers)
  3. Stefan Larsson (10 papers)
  4. Mattias Wiggberg (1 paper)
  5. Fredrik Heintz (18 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.