Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stronger Baseline for Person Re-Identification (2112.01059v1)

Published 2 Dec 2021 in cs.CV

Abstract: Person re-identification (re-ID) aims to identify the same person of interest across non-overlapping capturing cameras, which plays an important role in visual surveillance applications and computer vision research areas. Fitting a robust appearance-based representation extractor with limited collected training data is crucial for person re-ID due to the high expanse of annotating the identity of unlabeled data. In this work, we propose a Stronger Baseline for person re-ID, an enhancement version of the current prevailing method, namely, Strong Baseline, with tiny modifications but a faster convergence rate and higher recognition performance. With the aid of Stronger Baseline, we obtained the third place (i.e., 0.94 in mAP) in 2021 VIPriors Re-identification Challenge without the auxiliary of ImageNet-based pre-trained parameter initialization and any extra supplemental dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.