Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improving gearshift controllers for electric vehicles with reinforcement learning

Published 1 Dec 2021 in eess.SY and cs.SY | (2112.00529v1)

Abstract: During a multi-speed transmission development process, the final calibration of the gearshift controller parameters is usually performed on a physical test bench. Engineers typically treat the mapping from the controller parameters to the gearshift quality as a black-box, and use methods rooted in experimental design -- a purely statistical approach -- to infer the parameter combination that will maximize a chosen gearshift performance indicator. This approach unfortunately requires thousands of gearshift trials, ultimately discouraging the exploration of different control strategies. In this work, we calibrate the feedforward and feedback parameters of a gearshift controller using a model-based reinforcement learning algorithm adapted from Pilco. Experimental results show that the method optimizes the controller parameters with few gearshift trials. This approach can accelerate the exploration of gearshift control strategies, which is especially important for the emerging technology of multi-speed transmissions for electric vehicles.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.