Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Coordinated Multi-Robot Trajectory Tracking Control over Sampled Communication (2112.00165v5)

Published 30 Nov 2021 in cs.RO, cs.MA, cs.SY, and eess.SY

Abstract: In this paper, we propose an inverse-kinematics controller for a class of multi-robot systems in the scenario of sampled communication. The goal is to make a group of robots perform trajectory tracking in a coordinated way when the sampling time of communications is much larger than the sampling time of low-level controllers, disrupting theoretical convergence guarantees of standard control design in continuous time. Given a desired trajectory in configuration space which is precomputed offline, the proposed controller receives configuration measurements, possibly via wireless, to re-compute velocity references for the robots, which are tracked by a low-level controller. We propose joint design of a sampled proportional feedback plus a novel continuous-time feedforward that linearizes the dynamics around the reference trajectory: this method is amenable to distributed communication implementation where only one broadcast transmission is needed per sample. Also, we provide closed-form expressions for instability and stability regions and convergence rate in terms of proportional gain $k$ and sampling period $T$. We test the proposed control strategy via numerical simulations in the scenario of cooperative aerial manipulation of a cable-suspended load using a realistic simulator (Fly-Crane). Finally, we compare our proposed controller with centralized approaches that adapt the feedback gain online through smart heuristics, and show that it achieves comparable performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube