Papers
Topics
Authors
Recent
2000 character limit reached

Motivic, logarithmic, and topological Milnor fibrations (2111.14881v3)

Published 29 Nov 2021 in math.AG

Abstract: We compare the topological Milnor fibration and the motivic Milnor fibre of a regular complex function with only normal crossing singularities by introducing their common extension: the complete Milnor fibration. We give two equivalent constructions: the first one extending the classical Kato-Nakayama log-space, and the second one, more geometric, based on the real oriented multigraph construction, a version of the real oriented deformation to the normal cone. As an application, we recover A'Campo's model of the topological Milnor fibration, by quotienting the motivic Milnor fibration with suitable powers of $\mathbb{R}_{>0}$, and show that it determines the classical motivic Milnor fibre. We also give precise formulae expressing how the introduced objects change under blowings-up. As an application, we show that the motivic Milnor fibre is well-defined as an element of a suitable Grothendieck ring without requiring that the Lefschetz motive be invertible.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.