Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Geometric characterizations of the strict Hadamard differentiability of sets (2111.13870v1)

Published 27 Nov 2021 in math.FA and math.OC

Abstract: Let $S$ be a closed subset of a Banach space $X$. Assuming that $S$ is epi-Lipschitzian at $\bar{x}$ in the boundary $ \bd S$ of $S$, we show that $S$ is strictly Hadamard differentiable at $\bar{x}$ IFF the Clarke tangent cone $T(S, \bar{x})$ to $S$ at $\bar{x}$ contains a closed hyperplane IFF the Clarke tangent cone $T(\bd S, \bar{x})$ to $\bd S$ at $\bar{x}$ is a closed hyperplane. Moreover when $X$ is of finite dimension, $Y$ is a Banach space and $g: X \mapsto Y$ is a locally Lipschitz mapping around $\bar{x}$, we show that $g$ is strictly Hadamard differentiable at $\bar{x}$ IFF $T(\mathrm{graph}\,g, (\bar{x}, g(\bar{x})))$ is isomorphic to $X$ IFF the set-valued mapping $x\rightrightarrows K(\gh g, (x, g(x)))$ is continuous at $\bar{x}$ and $K(\gh g, (\bar{x}, g(\bar{x})))$ is isomorphic to $X$, where $K(A, a)$ denotes the contingent cone to a set $A$ at $a \in A$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube