Papers
Topics
Authors
Recent
2000 character limit reached

Challenges of Adversarial Image Augmentations (2111.12427v2)

Published 24 Nov 2021 in cs.LG and cs.CV

Abstract: Image augmentations applied during training are crucial for the generalization performance of image classifiers. Therefore, a large body of research has focused on finding the optimal augmentation policy for a given task. Yet, RandAugment [2], a simple random augmentation policy, has recently been shown to outperform existing sophisticated policies. Only Adversarial AutoAugment (AdvAA) [11], an approach based on the idea of adversarial training, has shown to be better than RandAugment. In this paper, we show that random augmentations are still competitive compared to an optimal adversarial approach, as well as to simple curricula, and conjecture that the success of AdvAA is due to the stochasticity of the policy controller network, which introduces a mild form of curriculum.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.