A Self-Supervised Automatic Post-Editing Data Generation Tool (2111.12284v2)
Abstract: Data building for automatic post-editing (APE) requires extensive and expert-level human effort, as it contains an elaborate process that involves identifying errors in sentences and providing suitable revisions. Hence, we develop a self-supervised data generation tool, deployable as a web application, that minimizes human supervision and constructs personalized APE data from a parallel corpus for several language pairs with English as the target language. Data-centric APE research can be conducted using this tool, involving many language pairs that have not been studied thus far owing to the lack of suitable data.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.