Papers
Topics
Authors
Recent
2000 character limit reached

Anomaly-resistant Graph Neural Networks via Neural Architecture Search (2111.11406v3)

Published 22 Nov 2021 in cs.LG and cs.AI

Abstract: In general, Graph Neural Networks(GNN) have been using a message passing method to aggregate and summarize information about neighbors to express their information. Nonetheless, previous studies have shown that the performance of graph neural networks becomes vulnerable when there are abnormal nodes in the neighborhood due to this message passing method. In this paper, inspired by the Neural Architecture Search method, we present an algorithm that recognizes abnormal nodes and automatically excludes them from information aggregation. Experiments on various real worlds datasets show that our proposed Neural Architecture Search-based Anomaly Resistance Graph Neural Network (NASAR-GNN) is actually effective.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.