Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Accretionary Learning with Deep Neural Networks (2111.10857v1)

Published 21 Nov 2021 in cs.LG

Abstract: One of the fundamental limitations of Deep Neural Networks (DNN) is its inability to acquire and accumulate new cognitive capabilities. When some new data appears, such as new object classes that are not in the prescribed set of objects being recognized, a conventional DNN would not be able to recognize them due to the fundamental formulation that it takes. The current solution is typically to re-design and re-learn the entire network, perhaps with a new configuration, from a newly expanded dataset to accommodate new knowledge. This process is quite different from that of a human learner. In this paper, we propose a new learning method named Accretionary Learning (AL) to emulate human learning, in that the set of objects to be recognized may not be pre-specified. The corresponding learning structure is modularized, which can dynamically expand to register and use new knowledge. During accretionary learning, the learning process does not require the system to be totally re-designed and re-trained as the set of objects grows in size. The proposed DNN structure does not forget previous knowledge when learning to recognize new data classes. We show that the new structure and the design methodology lead to a system that can grow to cope with increased cognitive complexity while providing stable and superior overall performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.