Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing the Insertion of NOP Instructions to Obfuscate Malware via Deep Reinforcement Learning (2111.09626v1)

Published 18 Nov 2021 in cs.CR

Abstract: Current state-of-the-art research for tackling the problem of malware detection and classification is centered on the design, implementation and deployment of systems powered by machine learning because of its ability to generalize to never-before-seen malware families and polymorphic mutations. However, it has been shown that machine learning models, in particular deep neural networks, lack robustness against crafted inputs (adversarial examples). In this work, we have investigated the vulnerability of a state-of-the-art shallow convolutional neural network malware classifier against the dead code insertion technique. We propose a general framework powered by a Double Q-network to induce misclassification over malware families. The framework trains an agent through a convolutional neural network to select the optimal positions in a code sequence to insert dead code instructions so that the machine learning classifier mislabels the resulting executable. The experiments show that the proposed method significantly drops the classification accuracy of the classifier to 56.53% while having an evasion rate of 100% for the samples belonging to the Kelihos_ver3, Simda, and Kelihos_ver1 families. In addition, the average number of instructions needed to mislabel malware in comparison to a random agent decreased by 33%.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.