Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Natural Gradient Variational Inference with Gaussian Mixture Models (2111.08002v1)

Published 15 Nov 2021 in cs.LG, cs.NA, and math.NA

Abstract: Bayesian methods estimate a measure of uncertainty by using the posterior distribution. One source of difficulty in these methods is the computation of the normalizing constant. Calculating exact posterior is generally intractable and we usually approximate it. Variational Inference (VI) methods approximate the posterior with a distribution usually chosen from a simple family using optimization. The main contribution of this work is described is a set of update rules for natural gradient variational inference with mixture of Gaussians, which can be run independently for each of the mixture components, potentially in parallel.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.