Papers
Topics
Authors
Recent
2000 character limit reached

Session-aware Item-combination Recommendation with Transformer Network

Published 13 Nov 2021 in cs.IR and cs.AI | (2111.07154v1)

Abstract: In this paper, we detailedly describe our solution for the IEEE BigData Cup 2021: RL-based RecSys (Track 1: Item Combination Prediction). We first conduct an exploratory data analysis on the dataset and then utilize the findings to design our framework. Specifically, we use a two-headed transformer-based network to predict user feedback and unlocked sessions, along with the proposed session-aware reweighted loss, multi-tasking with click behavior prediction, and randomness-in-session augmentation. In the final private leaderboard on Kaggle, our method ranked 2nd with a categorization accuracy of 0.39224.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.