Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Zero-sum partitions of Abelian groups of order $2^n$ (2111.05394v6)

Published 9 Nov 2021 in math.CO and math.GR

Abstract: The following problem has been known since the 80's. Let $\Gamma$ be an Abelian group of order $m$ (denoted $|\Gamma|=m$), and let $t$ and $m_i$, $1 \leq i \leq t$, be positive integers such that $\sum_{i=1}t m_i=m-1$. Determine when $\Gamma*=\Gamma\setminus{0}$, the set of non-zero elements of $\Gamma$, can be partitioned into disjoint subsets $S_i$, $1 \leq i \leq t$, such that $|S_i|=m_i$ and $\sum_{s\in S_i}s=0$ for every $i$, $1 \leq i \leq t$. It is easy to check that $m_i\geq 2$ (for every $i$, $1 \leq i \leq t$) and $|I(\Gamma)|\neq 1$ are necessary conditions for the existence of such partitions, where $I(\Gamma)$ is the set of involutions of $\Gamma$. It was proved that the condition $m_i\geq 2$ is sufficient if and only if $|I(\Gamma)|\in{0,3}$. For other groups (i.e., for which $|I(\Gamma)|\neq 3$ and $|I(\Gamma)|>1$), only the case of any group $\Gamma$ with $\Gamma\cong(Z_2)n$ for some positive integer $n$ has been analyzed completely so far, and it was shown independently by several authors that $m_i\geq 3$ is sufficient in this case. Moreover, recently Cichacz and Tuza proved that, if $|\Gamma|$ is large enough and $|I(\Gamma)|>1$, then $m_i\geq 4$ is sufficient. In this paper we generalize this result for every Abelian group of order $2n$. Namely, we show that the condition $m_i\geq 3$ is sufficient for $\Gamma$ such that $|I(\Gamma)|>1$ and $|\Gamma|=2n$, for every positive integer $n$. We also present some applications of this result to graph magic- and anti-magic-type labelings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.