Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dueling RL: Reinforcement Learning with Trajectory Preferences (2111.04850v3)

Published 8 Nov 2021 in cs.LG

Abstract: We consider the problem of preference based reinforcement learning (PbRL), where, unlike traditional reinforcement learning, an agent receives feedback only in terms of a 1 bit (0/1) preference over a trajectory pair instead of absolute rewards for them. The success of the traditional RL framework crucially relies on the underlying agent-reward model, which, however, depends on how accurately a system designer can express an appropriate reward function and often a non-trivial task. The main novelty of our framework is the ability to learn from preference-based trajectory feedback that eliminates the need to hand-craft numeric reward models. This paper sets up a formal framework for the PbRL problem with non-markovian rewards, where the trajectory preferences are encoded by a generalized linear model of dimension $d$. Assuming the transition model is known, we then propose an algorithm with almost optimal regret guarantee of $\tilde {\mathcal{O}}\left( SH d \log (T / \delta) \sqrt{T} \right)$. We further, extend the above algorithm to the case of unknown transition dynamics, and provide an algorithm with near optimal regret guarantee $\widetilde{\mathcal{O}}((\sqrt{d} + H2 + |\mathcal{S}|)\sqrt{dT} +\sqrt{|\mathcal{S}||\mathcal{A}|TH} )$. To the best of our knowledge, our work is one of the first to give tight regret guarantees for preference based RL problems with trajectory preferences.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aldo Pacchiano (72 papers)
  2. Aadirupa Saha (39 papers)
  3. Jonathan Lee (30 papers)
Citations (66)

Summary

We haven't generated a summary for this paper yet.