Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Investigating the Perceived Precision and validity of a Field-Deployable Machine Learning-based Tool to Detect Post-Traumatic Stress Disorder (PTSD) Hyperarousal Events (2110.13211v2)

Published 25 Oct 2021 in cs.HC

Abstract: Post Traumatic Stress Disorder is a psychiatric condition experienced by individuals after exposure to a traumatic event. Prior work has shown promise in detecting PTSD using physiological data such as heart rate. Despite the promise shown by the machine learning based algorithms for PTSD, the validation approaches used in previous research largely rely on theoretical and computational validation methods rather than naturalistic evaluations that account for users perceived precision and validity. Previous research has shown that users perceptions of physiological changes may not always align well with automated detection of such variables and such misalignment may lead to distrust in automated detection which may affect adoption or sustainable usage of such technologies. Therefore, the goal of this article is to investigate the perceived precision of the PTSD hyperarousal detection tool (developed previously) in a home study with a group of PTSD patients. Naturalistic evaluation of such data driven algorithms may provide foundational insight into the efficacy of such tools for non intrusive and cost efficient remote monitoring of PTSD symptoms and will pave the way for their future adoption and sustainable use. The results showed over sixty five percent of perceived precision in naturalistic validation of the detection tool. Further, the results indicated that longitudinal exposure to the detection tool might calibrate users trust in automation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.