Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hierarchical approach to matched filtering using a reduced basis (2110.13115v2)

Published 25 Oct 2021 in astro-ph.IM, astro-ph.HE, and gr-qc

Abstract: Searching for gravitational waves from compact binary coalescence (CBC) is performed by matched filtering the observed strain data from gravitational-wave observatories against a discrete set of waveform templates designed to accurately approximate the expected gravitational-wave signal, and are chosen to efficiently cover a target search region. The computational cost of matched filtering scales with both the number of templates required to cover a parameter space and the in-band duration of the waveform. Both of these factors increase in difficulty as the current observatories improve in sensitivity, especially at low frequencies, and may pose challenges for third-generation observatories. Reducing the cost of matched filtering would make searches of future detector data more tractable. In addition, it would be easier to conduct searches that incorporate the effects of eccentricity, precession or target light sources (e.g. subsolar). We present a hierarchical scheme based on a reduced basis method to decrease the computational cost of conducting a matched-filter based search. Compared to the current methods, we estimate without any loss in sensitivity, a speedup by a factor of ~ 10 for sources with signal-to-noise ratio (SNR) of at least =6.0, and a factor of ~ 6 for SNR of at least 5. Our method is dominated by linear operations which are highly parallelizable. Therefore, we implement our algorithm using graphical processing units (GPUs) and evaluate commercially motivated metrics to demonstrate the efficiency of GPUs in CBC searches. Our scheme can be extended to generic CBC searches and allows for efficient matched filtering using GPUs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube