Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Stochastic Shortest Path with Linear Function Approximation (2110.12727v3)

Published 25 Oct 2021 in cs.LG, math.OC, and stat.ML

Abstract: We study the stochastic shortest path (SSP) problem in reinforcement learning with linear function approximation, where the transition kernel is represented as a linear mixture of unknown models. We call this class of SSP problems as linear mixture SSPs. We propose a novel algorithm with Hoeffding-type confidence sets for learning the linear mixture SSP, which can attain an $\tilde{\mathcal{O}}(d B_{\star}{1.5}\sqrt{K/c_{\min}})$ regret. Here $K$ is the number of episodes, $d$ is the dimension of the feature mapping in the mixture model, $B_{\star}$ bounds the expected cumulative cost of the optimal policy, and $c_{\min}>0$ is the lower bound of the cost function. Our algorithm also applies to the case when $c_{\min} = 0$, and an $\tilde{\mathcal{O}}(K{2/3})$ regret is guaranteed. To the best of our knowledge, this is the first algorithm with a sublinear regret guarantee for learning linear mixture SSP. Moreover, we design a refined Bernstein-type confidence set and propose an improved algorithm, which provably achieves an $\tilde{\mathcal{O}}(d B_{\star}\sqrt{K/c_{\min}})$ regret. In complement to the regret upper bounds, we also prove a lower bound of $\Omega(dB_{\star} \sqrt{K})$. Hence, our improved algorithm matches the lower bound up to a $1/\sqrt{c_{\min}}$ factor and poly-logarithmic factors, achieving a near-optimal regret guarantee.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yifei Min (17 papers)
  2. Jiafan He (27 papers)
  3. Tianhao Wang (98 papers)
  4. Quanquan Gu (198 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.