Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-optimal Regret Bounds for Stochastic Shortest Path (2002.09869v1)

Published 23 Feb 2020 in cs.LG and stat.ML

Abstract: Stochastic shortest path (SSP) is a well-known problem in planning and control, in which an agent has to reach a goal state in minimum total expected cost. In the learning formulation of the problem, the agent is unaware of the environment dynamics (i.e., the transition function) and has to repeatedly play for a given number of episodes while reasoning about the problem's optimal solution. Unlike other well-studied models in reinforcement learning (RL), the length of an episode is not predetermined (or bounded) and is influenced by the agent's actions. Recently, Tarbouriech et al. (2019) studied this problem in the context of regret minimization and provided an algorithm whose regret bound is inversely proportional to the square root of the minimum instantaneous cost. In this work we remove this dependence on the minimum cost---we give an algorithm that guarantees a regret bound of $\widetilde{O}(B_\star |S| \sqrt{|A| K})$, where $B_\star$ is an upper bound on the expected cost of the optimal policy, $S$ is the set of states, $A$ is the set of actions and $K$ is the number of episodes. We additionally show that any learning algorithm must have at least $\Omega(B_\star \sqrt{|S| |A| K})$ regret in the worst case.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Alon Cohen (24 papers)
  2. Haim Kaplan (111 papers)
  3. Yishay Mansour (158 papers)
  4. Aviv Rosenberg (19 papers)
Citations (53)

Summary

We haven't generated a summary for this paper yet.