Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimax Regret for Stochastic Shortest Path (2103.13056v2)

Published 24 Mar 2021 in cs.LG

Abstract: We study the Stochastic Shortest Path (SSP) problem in which an agent has to reach a goal state in minimum total expected cost. In the learning formulation of the problem, the agent has no prior knowledge about the costs and dynamics of the model. She repeatedly interacts with the model for $K$ episodes, and has to minimize her regret. In this work we show that the minimax regret for this setting is $\widetilde O(\sqrt{ (B_\star2 + B_\star) |S| |A| K})$ where $B_\star$ is a bound on the expected cost of the optimal policy from any state, $S$ is the state space, and $A$ is the action space. This matches the $\Omega (\sqrt{ B_\star2 |S| |A| K})$ lower bound of Rosenberg et al. [2020] for $B_\star \ge 1$, and improves their regret bound by a factor of $\sqrt{|S|}$. For $B_\star < 1$ we prove a matching lower bound of $\Omega (\sqrt{ B_\star |S| |A| K})$. Our algorithm is based on a novel reduction from SSP to finite-horizon MDPs. To that end, we provide an algorithm for the finite-horizon setting whose leading term in the regret depends polynomially on the expected cost of the optimal policy and only logarithmically on the horizon.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Alon Cohen (24 papers)
  2. Yonathan Efroni (38 papers)
  3. Yishay Mansour (158 papers)
  4. Aviv Rosenberg (19 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.