Modularity of Bershadsky-Polyakov minimal models (2110.10336v1)
Abstract: The Bershadsky-Polyakov algebras are the original examples of nonregular W-algebras, obtained from the affine vertex operator algebras associated with $\mathfrak{sl}_3$ by quantum hamiltonian reduction. In [arXiv:2007.03917], we explored the representation theories of the simple quotients of these algebras when the level $\mathsf{k}$ is nondegenerate-admissible. Here, we combine these explorations with Adamovi\'{c}'s inverse quantum hamiltonian reduction functors to study the modular properties of Bershadsky-Polyakov characters and deduce the associated Grothendieck fusion rules. The results are not dissimilar to those already known for the affine vertex operator algebras associated with $\mathfrak{sl}_2$, except that the role of the Virasoro minimal models in the latter is here played by the minimal models of Zamolodchikov's $\mathsf{W}_3$ algebras.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.