Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor category $KL_k(\mathfrak{sl}_{2n})$ via minimal affine $W$-algebras at the non-admissible level $k =-\frac{2n+1}{2}$ (2212.00704v1)

Published 1 Dec 2022 in math.QA, math-ph, math.MP, and math.RT

Abstract: We prove that $KL_k(\mathfrak{sl}m)$ is a semi-simple, rigid braided tensor category for all even $m\ge 4$, and $k= -\frac{m+1}{2}$ which generalizes result from arXiv:2103.02985 obtained for $m=4$. Moreover, all modules in $KL_k(\mathfrak{sl}_m)$ are simple-currents and they appear in the decomposition of conformal embeddings $\mathfrak{gl}_m \hookrightarrow \mathfrak{sl}{m+1} $ at level $ k= - \frac{m+1}{2}$ from arXiv:1509.06512. For this we inductively identify minimal affine $W$-algebra $ W_{k-1} (\mathfrak{sl}{m+2}, \theta)$ as simple current extension of $L{k}(\mathfrak{sl}m) \otimes \mathcal H \otimes \mathcal M$, where $\mathcal H$ is the rank one Heisenberg vertex algebra, and $\mathcal M$ the singlet vertex algebra for $c=-2$. The proof uses previously obtained results for the tensor categories of singlet algebra from arXiv:2202.05496. We also classify all irreducible ordinary modules for $ W{k-1} (\mathfrak{sl}{m+2}, \theta)$. The semi-simple part of the category of $ W{k-1} (\mathfrak{sl}{m+2}, \theta)$-modules comes from $KL{k-1}(\mathfrak{sl}_{m+2})$, using quantum Hamiltonian reduction, but this $W$-algebra also contains indecomposable ordinary modules.

Summary

We haven't generated a summary for this paper yet.