Higher Coleman Theory (2110.10251v1)
Abstract: We develop local cohomology techniques to study the finite slope part of the coherent cohomology of Shimura varieties. The local cohomology groups we consider are a generalization of overconvergent modular forms, and they are defined by using a stratification on the Shimura variety obtained from the Bruhat stratification on a flag variety via the Hodge-Tate period map. We construct a spectral sequence from the local cohomologies to the classical cohomology and use it to obtain classicality and vanishing results. We also develop a theory of p-adic families and construct eigenvarieties. As an application, we prove some new properties of Galois representations arising from certain non-regular algebraic cuspidal automorphic representations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.