Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Regret Minimization in Isotonic, Heavy-Tailed Contextual Bandits via Adaptive Confidence Bands (2110.10245v1)

Published 19 Oct 2021 in math.ST and stat.TH

Abstract: In this paper we initiate a study of non parametric contextual bandits under shape constraints on the mean reward function. Specifically, we study a setting where the context is one dimensional, and the mean reward function is isotonic with respect to this context. We propose a policy for this problem and show that it attains minimax rate optimal regret. Moreover, we show that the same policy enjoys automatic adaptation; that is, for subclasses of the parameter space where the true mean reward functions are also piecewise constant with $k$ pieces, this policy remains minimax rate optimal simultaneously for all $k \geq 1.$ Automatic adaptation phenomena are well-known for shape constrained problems in the offline setting; %The phenomenon of automatic adaptation of shape constrained methods is known to occur in offline problems; we show that such phenomena carry over to the online setting. The main technical ingredient underlying our policy is a procedure to derive confidence bands for an underlying isotonic function using the isotonic quantile estimator. The confidence band we propose is valid under heavy tailed noise, and its average width goes to $0$ at an adaptively optimal rate. We consider this to be an independent contribution to the isotonic regression literature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.