Thin Spectra and Singular Continuous Spectral Measures for Limit-Periodic Jacobi Matrices (2110.10113v2)
Abstract: This paper investigates the spectral properties of Jacobi matrices with limit-periodic coefficients. We show that for a residual set of such matrices, the spectrum is a Cantor set of zero Lebesgue measure, and the spectral measures are purely singular continuous. For a dense set of limit-periodic Jacobi matrices we can strengthen the result and show that the spectrum is a Cantor set of zero lower box counting dimension, and hence in particular of zero Hausdorff dimension, while still retaining the singular continuity of the spectral type. We also show how results of this nature can be established by fixing the off-diagonal coefficients and varying only the diagonal coefficients, and, in a more restricted version, by fixing the diagonal coefficients to be zero and varying only the off-diagonal coefficients. We apply these results to produce examples of weighted Laplacians on the multidimensional integer lattice having purely singular continuous spectral type and zero-dimensional spectrum.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.