Papers
Topics
Authors
Recent
2000 character limit reached

In a Nutshell, the Human Asked for This: Latent Goals for Following Temporal Specifications

Published 18 Oct 2021 in cs.AI and cs.LG | (2110.09461v2)

Abstract: We address the problem of building agents whose goal is to learn to execute out-of distribution (OOD) multi-task instructions expressed in temporal logic (TL) by using deep reinforcement learning (DRL). Recent works provided evidence that the agent's neural architecture is a key feature when DRL agents are learning to solve OOD tasks in TL. Yet, the studies on this topic are still in their infancy. In this work, we propose a new deep learning configuration with inductive biases that lead agents to generate latent representations of their current goal, yielding a stronger generalization performance. We use these latent-goal networks within a neuro-symbolic framework that executes multi-task formally-defined instructions and contrast the performance of the proposed neural networks against employing different state-of-the-art (SOTA) architectures when generalizing to unseen instructions in OOD environments.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.