Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mean-Variance Portfolio Selection in Contagious Markets

Published 18 Oct 2021 in q-fin.MF, math.OC, and q-fin.PM | (2110.09417v1)

Abstract: We consider a mean-variance portfolio selection problem in a financial market with contagion risk. The risky assets follow a jump-diffusion model, in which jumps are driven by a multivariate Hawkes process with mutual-excitation effect. The mutual-excitation feature of the Hawkes process captures the contagion risk in the sense that each price jump of an asset increases the likelihood of future jumps not only in the same asset but also in other assets. We apply the stochastic maximum principle, backward stochastic differential equation theory, and linear-quadratic control technique to solve the problem and obtain the efficient strategy and efficient frontier in semi-closed form, subject to a non-local partial differential equation. Numerical examples are provided to illustrate our results.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.