Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Locality of relative symplectic cohomology for complete embeddings (2110.08891v4)

Published 17 Oct 2021 in math.SG

Abstract: A complete embedding is a symplectic embedding $\iota:Y\to M$ of a geometrically bounded symplectic manifold $Y$ into another geometrically bounded symplectic manifold $M$ of the same dimension. When $Y$ satisfies an additional finiteness hypothesis, we prove that the truncated relative symplectic cohomology of a compact subset $K$ inside $Y$ is naturally isomorphic to that of its image $\iota(K)$ inside $M$. Under the assumption that the torsion exponents of $K$ are bounded we deduce the same result for relative symplectic cohomology. We introduce a technique for constructing complete embeddings using what we refer to as integrable anti-surgery. We apply these to study symplectic topology and mirror symmetry of symplectic cluster manifolds and other examples of symplectic manifolds with singular Lagrangian torus fibrations satisfying certain completeness conditions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.