Quantizations of Lie bialgebras, duality involution and oriented graph complexes
Abstract: We prove that the action of the Grothendieck-Teichm\"uller group on the genus completed properad of (homotopy) Lie bialgebras commutes with the reversing directions involution of the latter. We also prove that every universal quantization of Lie bialgebras is homotopy equivalent to the one which commutes with the duality involution exchanging Lie bracket and Lie cobracket. The proofs are based on a new result in the theory of oriented graph complexes (which can be of independent interest) saying that the involution on an oriented graph complex that changes all directions on edges induces the identity map on its cohomology.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.