Borel-Moore homology of determinantal varieties (2110.08197v2)
Abstract: We compute the rational Borel-Moore homology groups for affine determinantal varieties in the spaces of general, symmetric, and skew-symmetric matrices, solving a problem suggested by the work of Pragacz and Ratajski. The main ingredient is the relation with Hartshorne's algebraic de Rham homology theory, and the calculation of the singular cohomology of matrix orbits, using the methods of Cartan and Borel. We also establish the degeneration of the \v{C}ech-de Rham spectral sequence for determinantal varieties, and compute explicitly the dimensions of de Rham cohomology groups of local cohomology with determinantal support, which are analogues of Lyubeznik numbers first introduced by Switala. Additionally, in the case of general matrices we further determine the Hodge numbers of the singular cohomology of matrix orbits and of the Borel-Moore homology of their closures, based on Saito's theory of mixed Hodge modules.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.