Papers
Topics
Authors
Recent
2000 character limit reached

A Survey of Machine Learning Algorithms for Detecting Ransomware Encryption Activity (2110.07636v1)

Published 14 Oct 2021 in cs.LG and cs.CR

Abstract: A survey of machine learning techniques trained to detect ransomware is presented. This work builds upon the efforts of Taylor et al. in using sensor-based methods that utilize data collected from built-in instruments like CPU power and temperature monitors to identify encryption activity. Exploratory data analysis (EDA) shows the features most useful from this simulated data are clock speed, temperature, and CPU load. These features are used in training multiple algorithms to determine an optimal detection approach. Performance is evaluated with accuracy, F1 score, and false-negative rate metrics. The Multilayer Perceptron with three hidden layers achieves scores of 97% in accuracy and F1 and robust data preparation. A random forest model produces scores of 93% accuracy and 92% F1, showing that sensor-based detection is currently a viable option to detect even zero-day ransomware attacks before the code fully executes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.