Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

KiDS-1000 Cosmology: machine learning -- accelerated constraints on Interacting Dark Energy with COSMOPOWER (2110.07587v2)

Published 14 Oct 2021 in astro-ph.CO, astro-ph.IM, and gr-qc

Abstract: We derive constraints on a coupled quintessence model with pure momentum exchange from the public $\sim$1000 deg$2$ cosmic shear measurements from the Kilo-Degree Survey and the $\it{Planck}$ 2018 Cosmic Microwave Background data. We compare this model with $\Lambda$CDM and find similar $\chi2$ and log-evidence values. We accelerate parameter estimation by sourcing cosmological power spectra from the neural network emulator COSMOPOWER. We highlight the necessity of such emulator-based approaches to reduce the computational runtime of future similar analyses, particularly from Stage IV surveys. As an example, we present MCMC forecasts on the same coupled quintessence model for a $\it{Euclid}$-like survey, revealing degeneracies between the coupled quintessence parameters and the baryonic feedback and intrinsic alignment parameters, but also highlighting the large increase in constraining power Stage IV surveys will achieve. The contours are obtained in a few hours with COSMOPOWER, as opposed to the few months required with a Boltzmann code.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube