Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Auxiliary Loss of Transformer with Residual Connection for End-to-End Speaker Diarization (2110.07116v3)

Published 14 Oct 2021 in eess.AS and cs.SD

Abstract: End-to-end neural diarization (EEND) with self-attention directly predicts speaker labels from inputs and enables the handling of overlapped speech. Although the EEND outperforms clustering-based speaker diarization (SD), it cannot be further improved by simply increasing the number of encoder blocks because the last encoder block is dominantly supervised compared with lower blocks. This paper proposes a new residual auxiliary EEND (RX-EEND) learning architecture for transformers to enforce the lower encoder blocks to learn more accurately. The auxiliary loss is applied to the output of each encoder block, including the last encoder block. The effect of auxiliary loss on the learning of the encoder blocks can be further increased by adding a residual connection between the encoder blocks of the EEND. Performance evaluation and ablation study reveal that the auxiliary loss in the proposed RX-EEND provides relative reductions in the diarization error rate (DER) by 50.3% and 21.0% on the simulated and CALLHOME (CH) datasets, respectively, compared with self-attentive EEND (SA-EEND). Furthermore, the residual connection used in RX-EEND further relatively reduces the DER by 8.1% for CH dataset.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.