Papers
Topics
Authors
Recent
Search
2000 character limit reached

WeTS: A Benchmark for Translation Suggestion

Published 11 Oct 2021 in cs.CL | (2110.05151v3)

Abstract: Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire documents translated by machine translation (MT) \cite{lee2021intellicat}, has been proven to play a significant role in post editing (PE). However, there is still no publicly available data set to support in-depth research for this problem, and no reproducible experimental results can be followed by researchers in this community. To break this limitation, we create a benchmark data set for TS, called \emph{WeTS}, which contains golden corpus annotated by expert translators on four translation directions. Apart from the human-annotated golden corpus, we also propose several novel methods to generate synthetic corpus which can substantially improve the performance of TS. With the corpus we construct, we introduce the Transformer-based model for TS, and experimental results show that our model achieves State-Of-The-Art (SOTA) results on all four translation directions, including English-to-German, German-to-English, Chinese-to-English and English-to-Chinese. Codes and corpus can be found at https://github.com/ZhenYangIACAS/WeTS.git.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.