Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RankingMatch: Delving into Semi-Supervised Learning with Consistency Regularization and Ranking Loss (2110.04430v1)

Published 9 Oct 2021 in cs.CV

Abstract: Semi-supervised learning (SSL) has played an important role in leveraging unlabeled data when labeled data is limited. One of the most successful SSL approaches is based on consistency regularization, which encourages the model to produce unchanged with perturbed input. However, there has been less attention spent on inputs that have the same label. Motivated by the observation that the inputs having the same label should have the similar model outputs, we propose a novel method, RankingMatch, that considers not only the perturbed inputs but also the similarity among the inputs having the same label. We especially introduce a new objective function, dubbed BatchMean Triplet loss, which has the advantage of computational efficiency while taking into account all input samples. Our RankingMatch achieves state-of-the-art performance across many standard SSL benchmarks with a variety of labeled data amounts, including 95.13% accuracy on CIFAR-10 with 250 labels, 77.65% accuracy on CIFAR-100 with 10000 labels, 97.76% accuracy on SVHN with 250 labels, and 97.77% accuracy on SVHN with 1000 labels. We also perform an ablation study to prove the efficacy of the proposed BatchMean Triplet loss against existing versions of Triplet loss.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Trung Q. Tran (3 papers)
  2. Mingu Kang (41 papers)
  3. Daeyoung Kim (41 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.