Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

UniNet: Unified Architecture Search with Convolution, Transformer, and MLP (2110.04035v1)

Published 8 Oct 2021 in cs.CV

Abstract: Recently, transformer and multi-layer perceptron (MLP) architectures have achieved impressive results on various vision tasks. A few works investigated manually combining those operators to design visual network architectures, and can achieve satisfactory performances to some extent. In this paper, we propose to jointly search the optimal combination of convolution, transformer, and MLP for building a series of all-operator network architectures with high performances on visual tasks. We empirically identify that the widely-used strided convolution or pooling based down-sampling modules become the performance bottlenecks when the operators are combined to form a network. To better tackle the global context captured by the transformer and MLP operators, we propose two novel context-aware down-sampling modules, which can better adapt to the global information encoded by transformer and MLP operators. To this end, we jointly search all operators and down-sampling modules in a unified search space. Notably, Our searched network UniNet (Unified Network) outperforms state-of-the-art pure convolution-based architecture, EfficientNet, and pure transformer-based architecture, Swin-Transformer, on multiple public visual benchmarks, ImageNet classification, COCO object detection, and ADE20K semantic segmentation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.