Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Sparse Graphs with a Core-periphery Structure

Published 8 Oct 2021 in cs.LG | (2110.04022v1)

Abstract: In this paper, we focus on learning sparse graphs with a core-periphery structure. We propose a generative model for data associated with core-periphery structured networks to model the dependence of node attributes on core scores of the nodes of a graph through a latent graph structure. Using the proposed model, we jointly infer a sparse graph and nodal core scores that induce dense (sparse) connections in core (respectively, peripheral) parts of the network. Numerical experiments on a variety of real-world data indicate that the proposed method learns a core-periphery structured graph from node attributes alone, while simultaneously learning core score assignments that agree well with existing works that estimate core scores using graph as input and ignoring commonly available node attributes.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.