Papers
Topics
Authors
Recent
Search
2000 character limit reached

Imaginary Hindsight Experience Replay: Curious Model-based Learning for Sparse Reward Tasks

Published 5 Oct 2021 in cs.LG and cs.RO | (2110.02414v2)

Abstract: Model-based reinforcement learning is a promising learning strategy for practical robotic applications due to its improved data-efficiency versus model-free counterparts. However, current state-of-the-art model-based methods rely on shaped reward signals, which can be difficult to design and implement. To remedy this, we propose a simple model-based method tailored for sparse-reward multi-goal tasks that foregoes the need for complicated reward engineering. This approach, termed Imaginary Hindsight Experience Replay, minimises real-world interactions by incorporating imaginary data into policy updates. To improve exploration in the sparse-reward setting, the policy is trained with standard Hindsight Experience Replay and endowed with curiosity-based intrinsic rewards. Upon evaluation, this approach provides an order of magnitude increase in data-efficiency on average versus the state-of-the-art model-free method in the benchmark OpenAI Gym Fetch Robotics tasks.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.