Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Credit Risk for Unsecured Lending: A Machine Learning Approach (2110.02206v1)

Published 5 Oct 2021 in q-fin.RM, cs.LG, and q-fin.ST

Abstract: Since the 1990s, there have been significant advances in the technology space and the e-Commerce area, leading to an exponential increase in demand for cashless payment solutions. This has led to increased demand for credit cards, bringing along with it the possibility of higher credit defaults and hence higher delinquency rates, over a period of time. The purpose of this research paper is to build a contemporary credit scoring model to forecast credit defaults for unsecured lending (credit cards), by employing machine learning techniques. As much of the customer payments data available to lenders, for forecasting Credit defaults, is imbalanced (skewed), on account of a limited subset of default instances, this poses a challenge for predictive modelling. In this research, this challenge is addressed by deploying Synthetic Minority Oversampling Technique (SMOTE), a proven technique to iron out such imbalances, from a given dataset. On running the research dataset through seven different machine learning models, the results indicate that the Light Gradient Boosting Machine (LGBM) Classifier model outperforms the other six classification techniques. Thus, our research indicates that the LGBM classifier model is better equipped to deliver higher learning speeds, better efficiencies and manage larger data volumes. We expect that deployment of this model will enable better and timely prediction of credit defaults for decision-makers in commercial lending institutions and banks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. K. S. Naik (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.