Segre-Driven Radicality Testing (2110.01913v1)
Abstract: We present a probabilistic algorithm to test if a homogeneous polynomial ideal $I$ defining a scheme $X$ in $\mathbb{P}n$ is radical using Segre classes and other geometric notions from intersection theory. Its worst case complexity depends on the geometry of $X$. If the scheme $X$ has reduced isolated primary components and no embedded components supported the singular locus of $X_{\rm red}=V(\sqrt{I})$, then the worst case complexity is doubly exponential in $n$; in all the other cases the complexity is singly exponential. The realm of the ideals for which our radical testing procedure requires only single exponential time includes examples which are often considered pathological, such as the ones drawn from the famous Mayr-Meyer set of ideals which exhibit doubly exponential complexity for the ideal membership problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.